776 research outputs found

    Streamlined islands and the English Channel megaflood hypothesis

    Get PDF
    Recognising ice-age catastrophic megafloods is important because they had significant impact on large-scale drainage evolution and patterns of water and sediment movement to the oceans, and likely induced very rapid, short-term effects on climate. It has been previously proposed that a drainage system on the floor of the English Channel was initiated by catastrophic flooding in the Pleistocene but this suggestion has remained controversial. Here we examine this hypothesis through an analysis of key landform features. We use a new compilation of multi- and single-beam bathymetry together with sub-bottom profiler data to establish the internal structure, planform geometry and hence origin of a set of 36 mid-channel islands. Whilst there is evidence of modern-day surficial sediment processes, the majority of the islands can be clearly demonstrated to be formed of bedrock, and are hence erosional remnants rather than depositional features. The islands display classic lemniscate or tear-drop outlines, with elongated tips pointing downstream, typical of streamlined islands formed during high-magnitude water flow. The length-to-width ratio for the entire island population is 3.4 ± 1.3 and the degree-of-elongation or k-value is 3.7 ± 1.4. These values are comparable to streamlined islands in other proven Pleistocene catastrophic flood terrains and are distinctly different to values found in modern-day rivers. The island geometries show a correlation with bedrock type: with those carved from Upper Cretaceous chalk having larger length-to-width ratios (3.2 ± 1.3) than those carved into more mixed Paleogene terrigenous sandstones, siltstones and mudstones (3.0 ± 1.5). We attribute these differences to the former rock unit having a lower skin friction which allowed longer island growth to achieve minimum drag. The Paleogene islands, although less numerous than the Chalk islands, also assume more perfect lemniscate shapes. These lithologies therefore reached island equilibrium shape more quickly but were also susceptible to total erosion. Our observations support the hypothesis that the islands were initially carved by high-water volume flows via a unique catastrophic drainage of a pro-glacial lake in the southern North Sea at the Dover Strait rather than by fluvial erosion throughout the Pleistocene

    Water, oceanic fracture zones and the lubrication of subducting plate boundaries - insights from seismicity

    Get PDF
    We investigate the relationship between subduction processes and related seismicity for the Lesser Antilles Arc using the Gutenberg-Richter law. This power lawdescribes the earthquakemagnitude distribution, with the gradient of the cumulative magnitude distribution being commonly known as the b-value. The Lesser Antilles Arc was chosen because of its alongstrike variability in sediment subduction and the transition from subduction to strike-slip movement towards its northern and southern ends. The data are derived from the seismicity catalogues from the Seismic Research Centre of The University of the West Indies and the Observatoires Volcanologiques et Sismologiques of the Institut de Physique du Globe de Paris and consist of subcrustal events primarily from the slab interface. The b-value is found using a Kolmogorov-Smirnov test for a maximum-likelihood straight line-fitting routine. We investigate spatial variations in b-values using a grid-search with circular cells as well as an along-arc projection. Tests with different algorithms and the two independent earthquake cataloges provide confidence in the robustness of our results. We observe a strong spatial variability of the b-value that cannot be explained by the uncertainties. Rather than obtaining a simple north-south b-value distribution suggestive of the dominant control on earthquake triggering being water released from the sedimentary cover on the incoming American Plates, or a b-value distribution that correlates with on the obliquity of subduction, we obtain a series of discrete, high b-value 'bull's-eyes' along strike. These bull's-eyes, which indicate stress release through a higher fraction of small earthquakes, coincide with the locations of known incoming oceanic fracture zones on the American Plates. We interpret the results in terms of water being delivered to the Lesser Antilles subduction zone in the vicinity of fracture zones providing lubrication and thus changing the character of the related seismicity. Our results suggest serpentinization around mid-ocean ridge transform faults, which go on to become fracture zones on the incoming plate, plays a significant role in the delivery of water into the mantle at subduction zones

    Seismic velocity structure of seaward-dipping reflectors on the South American continental margin

    Get PDF
    Seaward dipping reflectors (SDRs) are a key feature within the continent to ocean transition zone of volcanic passive margins. Here we conduct an automated pre-stack depth-migration imaging analysis of commercial seismic data from the volcanic margins of South America. The method used an isotropic, ray-based approach of iterative velocity model building based on the travel time inversion of residual pre-stack depth migration move-out. We find two distinct seismic velocity patterns within the SDRs. While both types show a general increase in velocity with depth consistent with expected compaction and alteration/metamorphic trends, those SDRs that lie within faulted half grabens also have high velocity zones at their down-dip ends. The velocity anomalies are generally concordant with the reflectivity and so we attribute them to the presence of dolerite sills that were injected into the lava pile. The sills therefore result from late-stage melt delivery along the large landward-dipping faults that bound them. In contrast the more outboard SDRs show no velocity anomalies, are more uniform spatially and have unfaulted basal contacts. Our observations imply that the SDRs document a major change in rift architecture, with magmatism linked with early extension and faulting of the upper brittle crust transitioning into more organised, dike-fed eruptions similar to seafloor spreading

    The role of crustal accretion variations in determining slab hydration at an Atlantic subduction zone

    Get PDF
    We present a 2D P-wave velocity model from the outer rise region of the Lesser Antilles island arc, the first wide-angle seismic study of outer rise processes at an Atlantic subduction zone. The survey consists of 46 OBS receivers over a 174 km profile with velocities resolved to 15 km below top basement. The final velocity model, produced through tomographic inversion, shows a clear decrease in the velocity of the lower crust and upper mantle of the incoming plate as it approaches the trench. We attribute this drop to outer rise bend-related hydration, similar to Pacific cases, but superimposed on spatial variations in hydration generated at the slow-spreading ridge axis. In thin, tectonically controlled crust formed under magma-poor spreading conditions the superposition of these sources of hydration results in compressional velocities as low as 6.5 km s−1 beneath the PmP reflector. In contrast, segments of crust interpreted as having formed under magma-rich conditions show velocity reductions and inferred hydrous alteration more like that observed in the Pacific. Hence, variations in the style of crustal accretion, which is observed on 50–100 km length scales both along and across isochrons, is a primary control over the distribution of water within the slab at Atlantic subduction systems. This heterogeneous pattern of water storage within the slab is likely further complicated by along strike variations in outer rise bending, subducting fracture zones and deformation at segment ends and may have important implications for our understanding of long-term patterns of hazard at Atlantic subduction systems

    Benzolamide improves oxygenation and reduces acute mountain sickness during a high-altitude trek and has fewer side effects than acetazolamide at sea level.

    Get PDF
    Acetazolamide is the standard carbonic anhydrase (CA) inhibitor used for acute mountain sickness (AMS), however some of its undesirable effects are related to intracellular penetrance into many tissues, including across the blood-brain barrier. Benzolamide is a much more hydrophilic inhibitor, which nonetheless retains a strong renal action to engender a metabolic acidosis and ventilatory stimulus that improves oxygenation at high altitude and reduces AMS. We tested the effectiveness of benzolamide versus placebo in a first field study of the drug as prophylaxis for AMS during an ascent to the Everest Base Camp (5340 m). In two other studies performed at sea level to test side effect differences between acetazolamide and benzolamide, we assessed physiological actions and psychomotor side effects of two doses of acetazolamide (250 and 1000 mg) in one group of healthy subjects and in another group compared acetazolamide (500 mg), benzolamide (200 mg) and lorazepam (2 mg) as an active comparator for central nervous system (CNS) effects. At high altitude, benzolamide-treated subjects maintained better arterial oxygenation at all altitudes (3-6% higher at all altitudes above 4200 m) than placebo-treated subjects and reduced AMS severity by roughly 50%. We found benzolamide had fewer side effects, some of which are symptoms of AMS, than any of the acetazolamide doses in Studies 1 and 2, but equal physiological effects on renal function. The psychomotor side effects of acetazolamide were dose dependent. We conclude that benzolamide is very effective for AMS prophylaxis. With its lesser CNS effects, benzolamide may be superior to acetazolamide, in part, because some of the side effects of acetazolamide may contribute to and be mistaken for AMS

    Landscape of international event-based biosurveillance

    Get PDF
    Event-based biosurveillance is a scientific discipline in which diverse sources of data, many of which are available from the Internet, are characterized prospectively to provide information on infectious disease events. Biosurveillance complements traditional public health surveillance to provide both early warning of infectious disease events and situational awareness. The Global Health Security Action Group of the Global Health Security Initiative is developing a biosurveillance capability that integrates and leverages component systems from member nations. This work discusses these biosurveillance systems and identifies needed future studies

    Fault activity in the epicentral area of the 1580 Dover Strait (Pas-de-Calais) earthquake (northwestern Europe)

    Get PDF
    On 1580 April 6 one of the most destructive earthquakes of northwestern Europe took place in the Dover Strait (Pas de Calais). The epicentre of this seismic event, the magnitude of which is estimated to have been about 6.0, has been located in the offshore continuation of the North Artois shear zone, a major Variscan tectonic structure that traverses the Dover Strait. The location of this and two other moderate magnitude historical earthquakes in the Dover Strait suggests that the North Artois shear zone or some of its fault segments may be presently active. In order to investigate the possible fault activity in the epicentral area of the AD 1580 earthquake, we have gathered a large set of bathymetric and seismic-reflection data covering the almost-entire width of the Dover Strait. These data have revealed a broad structural zone comprising several subparallel WNW–ESE trending faults and folds, some of them significantly offsetting the Cretaceous bedrock. The geophysical investigation has also shown some indication of possible Quaternary fault activity. However, this activity only appears to have affected the lowermost layers of the sediment infilling Middle Pleistocene palaeobasins. This indicates that, if these faults have been active since Middle Pleistocene, their slip rates must have been very low. Hence, the AD 1580 earthquake appears to be a very infrequent event in the Dover Strait, representing a good example of the moderate magnitude earthquakes that sometimes occur in plate interiors on faults with unknown historical seismicity

    How is rape a weapon of war?: feminist international relations, modes of critical explanation and the study of wartime sexual violence

    Get PDF
    Rape is a weapon of war. Establishing this now common claim has been an achievement of feminist scholarship and activism and reveals wartime sexual violence as a social act marked by gendered power. But the consensus that rape is a weapon of war obscures important, and frequently unacknowledged, differences in ways of understanding and explaining it. This article opens these differences to analysis. Drawing on recent debates regarding the philosophy of social science in IR and social theory, it interprets feminist accounts of wartime sexual violence in terms of modes of critical explanation – expansive styles of reasoning that foreground particular actors, mechanisms, reasons and stories in the formulation of research. The idea of a mode of critical explanation is expanded upon through a discussion of the role of three elements (analytical wagers, narrative scripts and normative orientations) which accomplish the theoretical work of modes. Substantive feminist accounts of wartime sexual violence are then differentiated in terms of three modes – of instrumentality, unreason and mythology – which implicitly structure different understandings of how rape might be a weapon of war. These modes shape political and ethical projects and so impact not only on questions of scholarly content but also on the ways in which we attempt to mitigate and abolish war rape. Thinking in terms of feminist modes of critical explanation consequently encourages further work in an unfolding research agenda. It clarifes the ways in which an apparently commonality of position can conceal meaningful disagreements about human action. Exposing these disagreements opens up new possibilities for the analysis of war rape

    Scintigraphic assessment of bone status at one year following hip resurfacing : comparison of two surgical approaches using SPECT-CT scan

    Get PDF
    Objectives: To study the vascularity and bone metabolism of the femoral head/neck following hip resurfacing arthroplasty, and to use these results to compare the posterior and the trochanteric-flip approaches. Methods: In our previous work, we reported changes to intra-operative blood flow during hip resurfacing arthroplasty comparing two surgical approaches. In this study, we report the vascularity and the metabolic bone function in the proximal femur in these same patients at one year after the surgery. Vascularity and bone function was assessed using scintigraphic techniques. Of the 13 patients who agreed to take part, eight had their arthroplasty through a posterior approach and five through a trochanteric-flip approach. Results: One year after surgery, we found no difference in the vascularity (vascular phase) and metabolic bone function (delayed phase) at the junction of the femoral head/neck between the two groups of patients. Higher radiopharmaceutical uptake was found in the region of the greater trochanter in the trochanteric-flip group, related to the healing osteotomy. Conclusions: Our findings using scintigraphic techniques suggest that the greater intra-operative reduction in blood flow to the junction of the femoral head/neck, which is seen with the posterior approach compared with trochanteric flip, does not result in any difference in vascularity or metabolic bone function one year after surgery

    Changes in undergraduate student alcohol consumption as they progress through university

    Get PDF
    BACKGROUND: Unhealthy alcohol use amongst university students is a major public health concern. Although previous studies suggest a raised level of consumption amongst the UK student population there is little consistent information available about the pattern of alcohol consumption as they progress through university. The aim of the current research was to describe drinking patterns of UK full-time undergraduate students as they progress through their degree course. METHOD: Data were collected over three years from 5895 undergraduate students who began their studies in either 2000 or 2001. Longitudinal data (i.e. Years 1–3) were available from 225 students. The remaining 5670 students all responded to at least one of the three surveys (Year 1 n = 2843; Year 2 n = 2219; Year 3 n = 1805). Results: Students reported consuming significantly more units of alcohol per week at Year 1 than at Years 2 or 3 of their degree. Male students reported a higher consumption of units of alcohol than their female peers. When alcohol intake was classified using the Royal College of Physicians guidelines [1] there was no difference between male and females students in terms of the percentage exceeding recommended limits. Compared to those who were low level consumers students who reported drinking above low levels at Year 1 had at least 10 times the odds of continuing to consume above low levels at year 3. Students who reported higher levels of drinking were more likely to report that alcohol had a negative impact on their studies, finances and physical health. Consistent with the reduction in units over time students reported lower levels of negative impact during Year 3 when compared to Year 1. CONCLUSION: The current findings suggest that student alcohol consumption declines over their undergraduate studies; however weekly levels of consumption at Year 3 remain high for a substantial number of students. The persistence of high levels of consumption in a large population of students suggests the need for effective preventative and treatment interventions for all year groups
    corecore